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THE COMBINATORICS OF 
ALTERNATIVE FACTORIZATIONS 

BY 

E L S A  F I S M A N  A N D  M A R Y  S C H A P S  

ABSTRACT 

In this paper we count the number of distinct toroidal morphisms to 3-space 
satisfying Danilov's condition (0), obtaining the simple formula M. = 3.4" ~ for 
n blowings up. We also give average and extremal values for the number of 
alternative factorization sequences for such a morphism. 

Introduction 

In algebraic geometry, one of the obstacles to generalizing results about 

surfaces to higher dimensional varieties is the existence of alternative factoriza- 

tions of birational morphisms as a sequence of the elementary operations known 

as blowings up. Each blowing-up is an operation performed locally at a "center"  

of codimension at least two. For surfaces such centers are points and necessarily 

disjoint; for higher dimensional varieties the centers can intersect. In order to 

analyze the essential difficulty, "local" alternative factorizations at such intersec- 

tion points, we must first eliminate the "noise" of "global" alternative factoriza- 

tions, arising from blowing-up disjoint centers in varying orders. These "global" 

alternative factorizations exist already in the surface case, and we will study 

them in morphisms of 3-folds of a special type in which Danilov has shown the 

factorization to be locally unique. To simplify combinatorial analysis, we will 

work only with toroidal morphisms, in which the number of possible morphisms 

of a given type is finite. Since each such morphism can be completely rep- 

resented by a graph in the affine plane, we will not actually use any algebraic 

geometry in proving the results. 

The graphs we treat will be triangularizations of a basic triangle Go in R ~ with 

vertices P~, P2, and P~, which form an affine basis for the plane containing the 

triangle. Each point R = t~P~ + t2P2+ t3P3 with t~ + t2+ t~ = 1 will be assigned 

affine coordinates (t,, t2, t~). 
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DEFINITION. A triangularization Of the basic triangle will be called a Farey 

graph if all the vertices have rational coordinates, and for each simplex R~, RE, 

R3, the determinant of the three coordinate vectors is -+ 1/dld2d3, where di is the 

lowest common denominator of the coordinates of R. 

The results and methods of this paper are combinatorial, involving the 

enumerations of certain types of Farey graphs. However, since the significance 

of this enumeration lies in algebraic geometry, we will pause briefly to describe 

the algebro-geometric object associated to each Farey graph. 

To each simplex ~--[R~R2R3] we associate a copy X of affine three space 

with coordinates h, t2, t3. We regard [R~,R2, R3] as the dual graph of the 

configuration of coordinate planes in this space. Each vertex Ri corresponds to 

the plane {ti = 0}, each edge JR,, Rj] corresponds to the axis {t~ = tj = 0} and the 

interior of the simplex corresponds to the origin {h = rE--t3 = 0}. Since the 

correspondence is a dual one, dimensions and inclusions are reversed. 

If tro is the basic triangle P~P2P3, with coordinate functions x, y, z, then the 

affine coordinates of R~R2R3 determine a mapping f:X~---~X~o. If d~R~ = 

(a~, b~, c~) is the minimal integral vector in the direction of R2, then we set 

a a a b b b c c c 
X = t11122t3  ~, y = t l l t 2 2 1 3 3 ,  Z ---- t l ' t : 2 t 3  ~. 

Since, by the definition of a Farey graph, the matrix of exponents has 

determinant -+ 1, this matrix has an integral inverse and thus f?/:  X.o--~ X. is a 

rational map of the form 

t~ = xa'ye'z :', t2 = xd~ye2z :~, t3 = xd3ye~z:3, 

where the exponents are integral but may be negative, fS~ is well defined 

whenever x, y and z are all non-zero and maps this set U,o isomorphically to the 

open set U. of X. on which all the ti are non-zero. By composing this 

isomorphism we get birational correspondences among all the X.. 

We now wish to glue the X together in a way compatible with the morphisms, 

so that each vertex of the original Farey graph will correspond to a unique 

divisor. We consider a second simplex o-'= [R~R2R4] which shares a common 

edge with o-. Since R4 lies on the side of JR,, R2] opposite to R3, we  have 

d3R 3 = 0/,( d, R l) -~- a2( dzRz) + 0/a(d4R4), 

with 0/4 negative. If A is the matrix of exponents defining f~ and A '  is the matrix 

of exponents defining f~,, a simple substitution of the formulae for f~ in those for 

f.! shows that the correspondence f~,!of is given by the integral matrix of 
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exponents A '-1. A. Since the columns of A are simple combinations of the 

columns of A ' ,  we obtain the formulae 

t~=t~t~ ', t ;=t2t~ 2, t ]=t~  4. 

The ai must therefore be integers, and by the symmetry between o- and o-' we 

conclude that a3 = - 1 ,  i.e. that 

! __ �9 t 4 -  t j  I 

Thus X~--{t3 = 0} --'~-~ X , ~ , - { t ~  = 0}. When the two spaces are glued together on 

this open set, the t3 and t~ axis map to the same P~. The sets {t~ = 0} and {t'~ = 0} 

for i = 1,2 map to the same irreducible divisors in the glued space intersecting 

along that P'.  Thus the union of the simplices is still the dual graph of the system 

of special divisors. 

When all the X~ are glued together in this manner, we obtain a space Xv, 

together with a regular map/~ : Xv ~ X~ o. Now let us give a description in terms 

of the Farey graph for the algebro-geometric operation of blowing-up one of the 

triple points or double curves in the special system of divisors. 

I. Blowing up a simplex o - =  [RxR2R3] 

To "blow-up" a simplex we replace it by the following subdivision: We add 

one new vertex 

1 
R - d l + d 2 + d 3  ( d l R l + d 2 R z + d 3 R 3 ) ,  

and three edges [RR~] for i = 1, 2, 3. They create three new simplices of the form 

o',, = [ R,RjR ]. 

We now consider the effect on the affine space X with coordinate functions 

tlt213. If (a~, b~, c~) = v~ are the integral coordintes d~R~ of R~, then v, + v2+ v3 = v 

are the integral coordinates (dl + d2 + d3)R, and have no common divisor since 

det 2 = d e t  v2 = -+1 .  
/)3 

Consider the subsimplex ~r12 = [RIR2R ]. If we write the matrix of coefficients 

A = [v'iv;v'3], then 

e l 2  t t t = / . ) l / ) 2 V  = A 1 1 

0 1 
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Thus 

A,%' = 1 A -' 
0 

' t ' t '  with respect to x, y, z and Since A~-z' is the matrix of coefficients for t~ z 3 

similarly A " is the matrix of coefficients for t, tzt.~ with respect to x, y, z, we find 

that 

t'l = ht3 I, t~ = t2t; I, l~ =13. 

The new divisor corresponding to the vertex R is then locally defined by/3 = 0, 

and has a neighborhood with coordinates t, t3', t2t3', and ring of functions 

k [hJt3, tJt3]. When the three simplices 0,2, o-23, and 0.3~ are glued together in the 

manner described above, we get a new space X~,~,~.~2~.~,~ which is isomorphic to X,, 

except over the point t, = t2= t3=0.  At that point we have a new divisor 

obtained by glueing together three affine planes with coordinate functions t~/tk, 

t,/tk, giving the classical construction of the projective plane p2. This is the 

algebro-geometric operation of blowing-up a point. 

II. Blowing-up an edge [R,R2] 

To "blow-up" an edge [R,R2] we add the vertex 

1 
R = ~ ( a , R ,  + &R~). 

l a d l  q- 

If o" = [R~R2R3] is a simplex containing R~R2 as an edge, then add the edge 

[RR3] and replace or by two simplices 053 = [R,RR3] and o-23 = [R2RR3]. 
In the corresponding algebraic affine space X,, with coordinates t,t2t~, this 

corresponds to removing the t3 axis C and replacing it by a fiber bundle C x P' .  

The new space can be covered by two affine neighborhoods, one with coordi- 

nates h, tdh,  t3, and one with coordinates t,/h, t2, h, patched together in such a 

way that the tt/h axis becomes a P'. 

Danilov has just settled affirmatively what we will call the weak factorization 

conjecture for Farey graphs: Any Farey graph can be obtained from any other 

by a sequence of blowings-up and their inverses, blowings-down. However, what 

we may call the strong factorization conjecture remains open: Given two Farey 

graphs F and F'  can we find a third graph F" which can be obtained from each by 

blowings-up alone? In other words, do the Farey graphs form a directed system 

under the partial ordering =< determined by the operation of blowing up? 
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The general problem still appears quite intractable. We are restricting our 

attention temporarily to the special case in which F and F' are themselves 

obtained by blowings-up from the basic simplex, i.e. o-o_-< F, F'. Hironaka has 

asked: given a minimal F" such that F, F'_- < F", can we find a bound on the 

length of a chain connecting F to F" as a function of the lengths of the chains 

connecting F and F' to tro? 

In this way we are led to a study of the various alternative factorizations of 

F " =  > O-o by sequences of blowings-up. Considering the lattice of graphs F for 

which F _-< F" and F => ~o we find that it is highly branched. Unfortunately, the 

greater part of that branching is of a trivial nature. 

DEFINITION. Two factorizations of F" by blowings-up will be called locally 
equivalent if the sequence of subdivisions of any simplex along the chain is the 

same for both factorizations, and only the global order in the choice of centers 

for the blowings-up is the same. 

We are actually interested only in comparing lengths for sequences which are 

locally non-equivalent, and would thus like to replace each factorization 

sequence by its equivalence class under local equivalence. We would thus like to 

replace factorization sequences by some sort of branched factorization tree 

which would represent the entire equivalence class. 

Although we do not yet have an entirely satisfactory solution in the general 

case, we have managed to give a complete solution in the special case of Farey 

graphs satisfying the following condition: 

DEFINITION. A Farey graph will be called "exterior" if all the added points 

are on the edges of the basic triangle. 

As a consequence of the main theorem of Danilov [1], any exterior Farey 

graph is factorizable by blowings-up, and any two factorization sequences are 

locally equivalent. In this paper we show how to associate to any exterior Farey 

graph a binary tree, how to count the number of exterior Farey graphs associated 

to each tree, how to deduce the total number of exterior graphs containing n 

added points, and how to count the number of locally equivalent alternative 

factorizations associated to a given tree. 

We begin by counting the total number of factorization sequences. 

CLA1M. The number of possible factorization sequences producing an ex- 

terior Farey graph in n steps is (n + 2)!/2. 

For n = 1, we blow up one of the three exterior edges of the basic triangle. If 
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there are k + 2 exterior edges after step n = k - 1, then step n -- k will produce 

k + 3 exterior edges. The total number of choices is thus 

3 . 4  . . . . .  (n +2) = (n +2)!/2. 

We will show that most graphs have many factorizations, but there are wide 

variations in the number of alternative factorizations of a graph. The possibilities 

range from "deep"  graphs with a unique factorization to "shallow" graphs, 

which have a much larger than average number of factorization sequences. In 

Fig. 1 we give the simplest case of an alternative factorization. 

Fig. 1. 

By the Danilov result quoted above, each equivalence class of factorization 

sequences under local equivalence corresponds to a unique exterior Farey graph 

F. Our main result is the following: 

PROPOSITION. The number Mc of distinct exterior Farey graphs obtained by c 

blowings up, for c >= 1, is 3 .4  ~ 1. The set of such graphs can be partitioned into 
classes labelled by binary graphs, each class containing graphs with the same 
number and types of alternative factorizations. 

PROOF. An aftine mapping of a triangular Farey subgraph of RIR2R3 of a 

Farey graph F onto a triangular Farey subgraph R'~R~R; of a Farey graph F; 

will be called a Farey map if it is induced by the linear transformation carrying 

d, Ri to d'iR',. It is one of the convenient facts about polygonal complexes that 

such a mapping transforms a sequence of blowings up in R~R2R3 to the 

corresponding sequence of blowings up in R'tR~R~. To check this is a trivial 
exercise in afline geometry. 
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DEFINITION. Let Sc be the number of exterior Farey graphs with all added 

points on a single side, the side opposite P~. Let Nc be the number of exterior 

Farey graphs with all added points on two sides, opposite P1 and P2. 

LEMMA 1. Sc =X,+j=~-, S, Sj. 

PROOF. If RIR2R3 is a simplex in a graph F, then the number of graphs 

obtainable by c blowings up centered on the edge R2R3 also equals So, since we 

can apply the Farey map taking P~ to R, for i = 1,2, 3. The only possible center 

for the first blowing up is P2P3, that being, at the first stage, the only edge on the 

side opposite P1. Let P4 be the resulting center point. 

If F is any graph obtained by blowing up n points on P2P3, then in addition to 

the point P4 there must be i l~oints on P2P4 and j points on P4P3, with 

i + j = c - 1. Since the number of possible blowings up of P1P2P4 with i centers 

on P2P4 is S~, and the number of possible blowings up of PIP4P3 with j centers on 

P4P3 is S ,  we have S~Sj possibilities for each pair i, j with i + j = c - 1, giving 

Sn = ~ S, Sj. 
i+j=c--I 

The first few values are as follows: 

S o = l ,  

$1 = SoSo = 1, 

$2 = SoS1 + SiSo=2, 

$3=SoS2+S1S1+$2So = 5, 

$4 = SoS3 + " ' ' + $ 3 S 0  = 14, 

$5=SoS4+.. .+$4So=42. 

The combinatorist may recognize these as the Catalan numbers (2c)!/c!(c +1)!. 

However,  we will derive a few more results from geometry before plunging into 

combinatorics. 

LEMMA 2. Let Nc be the number of Farey graphs with c + 3 vertices all lying on 

the sides opposite to P1 and to P2. 

Then Nc = 2 E,+j ~c-1 N~Sj for c > O. 

PROOF. The first blowing up must be either the edge P2P3 or the edge P3P1. 

Since the two cases are exactly symmetrical, and the first blowing up is uniquely 
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determined by the line containing the center point �89 + P2+ P3), we will 

calculate the number starting with the blowing up P2P3, and then double it. 

Again we consider the possibilities for the two simplices PIP4P3 and P~P2P4 

separately (see Fig. 2). Assume that there are i points in the first and j points in 

/'3 

PI ~ P2 

Fig. 2. 

the second, with i + j = c - 1. The number of possibilities for graphs obtaaned by 

blowing up edges opposite P1 or ,~ in P1P4P3 is N~. Similarly the number of 

blowings up of PIP2P4 with centers only in the edge opposite P1 is Sj. Thus for 

each pair (i, j )  we have a total of N~Sj possibilities. Considering all pairs (i, j)  and 

multiplying by 2 to cover symmetrical cases, we have, for c > 0, 

N~=2 Z N~Sj. 
i+j=c--I 

Again we compute the first few terms 

N o = l ,  S o = l ,  

Nl = 2NoSo = 2, $1 = 1, 

N2 = 2(NoS, + NISo) = 6, $2 = 2, 

N3 = 2(NOS2 + ' "  + N2So) = 20, S3 = 5, 

N, = 2(NOS3 + " "  + N3So) = 70, $4 = 14. 

The reader may notice the following pattern: 

COROLLARY. Nm = (m + 1)Sin. 

PROOF. By induction. For m = 0, we have No = 1. So assume the formula to 

be true for m < k. 

N~ = 2(NoS~-, + . . .  + Nk-,So). 
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Case 1. k = 2c + l. 

Nk = 2[(NoSk-, + Nk-,So) + (NIS~-2 + Nk-2S,) + . . .  + (NoSe)] 

= 2[(SoSk-, + kSk-,So) + (2S,&_2 + (k - 1)Sk_2S,) + . . .  + (c + 1)ScSc] 

= 2 [(l + k)So&-, +(l + k ) S , & - z + . . . + ( l  + k)Sc_,Sc+, + k + l---f- S~Sc] 

= (1 + k)[ZS,,Sk_~ + . . .  + 2Sc_tS.+, + ScSc] 

= ( l + k )  ~'. S,S, 
i+j=k- I  

= (1 + k)S~. 

Case 2. k=2c.  

Nk = 2[(NoSk-, + Nk-,So)+".  + (N~_ISc + N~S~-I)] 

= 2[(1 + k)So&-, + . . .  + (1 + k)Sc-,Sc] 

=(l+k) ~ S, Sj 
i+j=k-1 

= (1 + k)Sk. 

LEMMA 3. Mc = 3 E,+j=c-, ~Nj .  

PROOF. As before, there is a unique first blowing up, determined by the line 

containing the midpoint -~(P1 + P2 + P3). Since the 3 sets of graphs with different 

first blowings-up are disjoint, and symmetrical under rotation, the total number 

of possibilities is three times the number of graphs whose first center is the edge 

PzP3. By a now familiar process, we presume that of the remaining c - 1 points, i 

lie in the simplex P1P4P3 and j in the simplex P~P2P4. Since in each of these 

simplices the blowings up occur only on two of the three edges, those which are 

segments of the basic graph Go, we have N~Nj possibilities for each pair (i, j), 

giving 

Me=3 ~ N~Nj. 
i+j=c--I 

Again we calculate the first few terms 

M I  ~--- 3, 

M 2 = 3 ( 1 . 2 + 2 . 1 ) = 3 . 4 ,  

M 3 = 3 ( 1 ' 6 + 2 " 2 + 6 "  1 ) = 3 . 1 6 ,  

M4 = 3(1 �9 2 0 + 2 . 6  + 6 .2  + 20.1) = 3.64. 
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The conjecture Mc = 3 " 4  c-~ presents itself immediately. In lieu of the 

geometrical proof we might have preferred, but have not found, we give a 

combinatorial proof: 

Before obtaining formulae for Me, we must first complete Sc and No. The 

standard combinatorial technique for determining a sequence of recursively 

defined numbers begins by constructing the formal power series with coefficients 

from the sequence. This series is called the generating function. Let us define 

two generating functions 

and 

f (X )  = So+ SIX dr_ $2x2_~_ $3x3_~_... 

g(x ) = No + N,x + N2x 2 + N3x 3 + . . . .  

As an illustration of the utility of the generating function, we recall that by the 

corollary to Lemma 2, Nc = (c + 1)So. Substituting in the formula for g(x), we 

have 

g(x ) = So + 2S,x +3S2x2+ - . . .  

One need not be a combinatoralist to notice that g(x)= (xf(x))'. 

We now search for an analytic expression for f(x), from which the coefficients 

can be recovered via Taylor expansions. We then try to use the recursion 

formula for the coefficients to establish a "functional equation", some expres- 

sion in f (x)  and x which is identically zero. 

In order to calculate So, the number of Farey graphs with c added points all on 

a given edge P2P3, we associate to each a tree, on which the vertices represent 

segments of P2P3. After the first blowing-up, P2P3 becomes a branch point, and 

we attach to it two terminal vertices representing P2P4 and P4P3. After i 

blowings up we will have i + 1 terminal vertices corresponding from left to right 

to the segements of the Farey graph. In addition there will be i branch points, 

each with two branches coming out of it, corresponding to the segments at 

intermediate stages in the factorization. If the i-th step consists of blowing up the 

k-th segment and replacing it by two segments, then we transform the tree by 

converting the k-th terminal vertex to a branch point, attaching two new 

terminal vertices to it. As an illustration, all binary trees for c = 4 are given at 

the end of the paper in Example 4. 

After noting this correspondence between graphs and trees, the authors 

applied the theory of DeBruijn [2] for the enumeration of "tree-shaped 

molecules" to calculate the functional equation of f(x). In retrospect this was 
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somewhat like shooting a fly with an anti-aircraft missile since the trees 

corresponding to the S~ are simple binary trees whose enumeration is one of the 

better known facts of combinatorics. For that reason it seems unnecessary to 

describe the method originally used, and we will rely on the fact that construct- 

ing functional equations is an art form similar to integration in elementary 

calculus: once one has the result it is necessary only to substitute f ( x )  in order to 

prove that it is correct. 

LEMMA 4. The generating function 

f ( x )  = So+ S,x +$2x2+ ' ' '  

satisfies the functional equation 

Thus 

xf f (x)  - f ( x )  + 1 = O. 

1 
f ( x )  = ~xx (1 - k / 1 - 4 x ) ,  

and therefore Sc = (2c)I/c!(c +l ) l .  

PROOF. We define a generating function 

f ( x ) =  So+ S,x + 82x2+ . . . .  

Squaring, we have 

+ S,So)x + . . . + (  E s,s,] x c + . . .  f2(x) = S 2  --~ ( So S1  
k i+ j=c / 

: S I  "~ S2X "Jr- $3X2"~ -~  ~ ~ 

= [ ( x )  - 1 

x 

This gives a functional equation 

xf2(x) - f ( x )  + 1 = O, 

l _+X/1 -4x  
f ( x )  = 2x 

Of the two possible solutions, only the one with the negative sign gives the right 

initial terms, so 
1 

f ( x )  = ~ x  (1 - X/l-- 4x). 
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Using the extended binomial expansion, 

I 1 l 

( 1 - 4 x )  m l + ~ ( - 4 x ~ '  = ' •  2! ( - 4 x ) 2 + ' " - t  

- ~ . . .  

(c + 1)! 
( - 4 x f  +~ 

= 1 - ( 1  (2x) + ~ . t l  (2x)2 + �9 �9 �9 4 1 . 1 . 3 . . - ( 2 c -  1) ) 
( c + l ) !  (2x )~+ '+""  ; 

1 ),/2) 
f ( x ) = ~ X  ( 1 - ( 1 - 4 x  

= ~ 1 " 3 " " 2 c - 1  
,=o ic-+ ~.v) (2x f  

x c 

,-o (c + 1)! c ! 

LEMMA 5. I[ g(x ) = No+ Nix  + " "  is the generating[unction[or {N~}, then 

g(x) = (1 - 4 x )  'a, 

N, = (c + 1)So = (2c)! 
c!c!  " 

PROOF. 

g(x ) = No + N,x  + N2x + " "  

= So+2S~x + 3S2x2 + " ' "  

= ( x f ( x ) ) '  

= -~(1 - (1 - 4x)'/2) ' 

= ~( - 1)(1 - 4 x ) - " 2 ( - 4 )  

= (1 - 4 x )  -'n. 

We could calculate Nc from the Taylor expansion of g(x), but it is simpler to 

combine Lemma 2 and Lemma 4: 

LEMMA 6. 
Mc = 3 " 4  ~-'. 

(2c)! (2c)! 
Nc = ( c  +l)Sc = (c +1)  (c + 1)!c! = c!c!  " 

I[ h ( x ) =  MI + Mzx + M3x2 + " ' ' ,  then h ( x ) = 3 ( 1 - 4 x ) ' .  Thus 
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PROOF. Noting the similarity between the formula for calculating Sc and the 

formula for calculating Me, we see that 

Thus 

g2(x) = NoNo+ (NON, + N~No)x + . . .  

=~(M~ + M2x + Max 2+'" ") 

h(x) = 3g2(x) 

= 3 "  ( ( 1  - 4x)-1'2)~ 

= 3(1 - 4x)-' 

= 3(1+4x +(4x)2+ . . . ) .  

To complete the proof of the proposition it remains to associate a weighted 

binary tree to each exterior graph, and to show that the number of alternative 

factorizations depends only on this tree. The root branch point will represent 

the first blowing up, and hanging from each of the two branches will be the trees 

of the corresponding subgraphs. Each branch point will be weighted by a 

number between one and three representing the number of edges of the 

corresponding subtriangle which are available for blowing up. If both new 

simplices have the same number of exterior edges, the one in the clockwise 

direction will be on the left. If not, then the one with the larger number of 
exterior edges will go on the left. 

We claim that the number of exterior Farey graphs associated to a given 

binary tree is the product of the weights of the branch points. At the root there 

are three possible sides to be blown up. This choice produces three disjoint 

classes, which are isomorphic under rotation. The blowing-up bisects one of the 

corners. Thereafter the remaining two corners remain empty, because the sides 

opposite to them are not exterior. Thus after c blowings up there will be two 

corner simplices and c - 1 wedge simplices containing only one exterior edge. 

The corner simplices can be blown up in one of two ways, and thus are given a 

weight of two. The blowing-up produces one corner simplex and one new wedge. 

The wedge simplices have a unique blowing up and produce only wedges. 

The number of blowings-up centered in corner simplices is the sum of the 

lengths of the ieftmost path from each of the two original branches. If this 

number is m, then the total number of possibilities in each of the three classes is 
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2 1 3 4  2 

Fig. 3. 

2", giving 3 -2"  possibilities altogether. See Fig. 3 for two examples of graphs 

sharing a binary tree of weight 3 .2  3= 24. 

To complete the proof of the proposition, we need only show that the number 

of alternative factorizations depends only on the binary tree. We will in fact 

prove the following explicit formula: 

LEMMA 7. Suppose that to each branch vertex v~, i = 1,. �9 c in the binary tree 
associated with an exterior Farey graph F, we associate numbers l~ and r~, giving 

the number of branch points in the subtrees hanging from the left and right 

branches, respectively. Then the number of alternative factorizations of F is 

i=, li!r~! 

PROOF. Let us represent the number of alternative factorizations of a graph F 

by P(F). If G is a simplex, with no branch points in the corresponding tree, then 

P(F)  = 1. We proceed by induction, assuming the lemma is true for c - 1. (The 

product is empty and equal to 1 if c - 1  = 0.) 

The first blowing-up in F is uniquely determined, giving two subgraphs F~ and 

F,. The tree of F has l~ branch points and the tree of F, has r~ branch points. If 

a~, ' . . ,  ah is one of the P(Ft) factorization sequences for F~, and b~,--., b,, is one 

of the P ( E )  factorization sequences for F,, then the number of ways of 

interspersing these two sequences into one long sequence c t , . .  ", ct,+,, is 

(ll + &) = (l, + r,), 
rl IL! rl! ' 

the number of ways of choosing rl of the cj to hold the r, elements of the b~ 

sequence. Thus altogether we have 

P(F) = (l, + r~)[ P(Ft)P(F,);  
l~! r,! 

substituting for P(F~) and P ( E )  by induction, we get the desired result. 

We calculate P(F)  for three different graphs with seven branch points. Since 

the number depends only on the tree, we may as well write P(T) .  We also 
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calculate M(T), N(T) and S(T), the number of three-sided, two-sided and 
one-sided graphs sharing that tree. The calculation of M(T) was given earlier. 
N(T) is obtained by weighting only the branch points on the leftmost path by 2, 
and for S(T) every branch point has weight 1, so that there is a one-to-one 
correspondence between binary trees and one sided graphs. See Fig. 4. 

T~ T~ 

Fig. 4. 

EXAMPLE 1. 

EXAMPLE 2. 

T =  T1 

4 3 1 0 
P(T)--(661 (~)(41 (31 (~t (1 / (0)  

M(T) =3.26 = 192, 

N(T) = 27 = 128, 

S ( T )  = 1. 

=1, 

T = %  

=6.3 

=18, 

M(T) =3 .23 .2  =48, 

N(T) = 24 = 16, 

S (T)=  1. 
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EXAMPLE 3. T = T3 

0 0 0 0 
P (T ' - - (63 )  (~1) (0)  (0) (~) (0) (0) 

6 . 5 . 4  
=3.2.-----5.2.2 

= 80, 

M ( T ) = 3 . 2 2 .  22 =48,  

N(T)  = 23 = 8, 

S(T) = 1. 

Note that M7 = 3 . 4  ~, while the total number  of factorization sequences with 
seven blowings up is 9!/2. The average is thus around 29.5. Since the binomial 
coefficients appearing in the formula for P(F) are largest when 6 = ri, the 
symmetrical graph in Example 3 gives the maximum value for P(T) for c = 7. 

EXAMPLE 4. We give the complete catalogue of trees for c = 3 (Fig. 5). 

T, T2 T3 T, T5 

Fig. 5. 

P(T~) 1 1 

M(T~) 12 6 

N(T,) 8 4 

S(T,) 1 1 

~'. M(T,)  = M3 = 48, 

~'. N(T~) = N3 = 20, 

Z S(T,)= S =S, 

2 1 

12 12 

4 2 

1 1 

1 

6 

2 

1 

P(T,)M(T,)  = (3 + 2)! = 60, 
2~ 

~, P(T~)N(T~) = (3 + 1)! = 24, 

~, P(T,)S(T,) = 3! = 6. 
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EXAMPLE 5. W i t h o u t  ac tua l ly  d r a w i n g  the  t r ees ,  we  g ive  in t a b u l a r  f o r m  the  

c o r r e s p o n d i n g  n u m b e r s  for  the  f o u r t e e n  t rees  wi th  c = 4. 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

P(T,) 1 1 2 1 1 3 3 3 3 1 1 2 1 1 
M(T~) 24 12 12 6 6 24 12 24 12 24 12 12 6 6 
N(T~) 16 8 8 4 4 8 4 4 4 2 2 2 2 2 
S(T,) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

M ( T , )  = 192, 

N(T~)  = 70, 

S(T~) = 14, 

6~ 
P (T~)M(T~)  = ~ = 360, 

5! 
P (T~)N(T~)  = ~ = 120, 

P(T~)S(T~)  = 4! = 2 4 .  
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